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Abstract
Soils are viewed in the context of ecosystem services, soil processes
and properties, and key attributes and constraints. The framework
used is based on the premise that the natural capital of soils that
underlies ecosystem services is primarily determined by three core
soil properties: texture, mineralogy, and soil organic matter. Up-to-
date descriptions and geographical distribution of soil orders as well
as soil attributes and constraints are given, along with the relation-
ships between soil orders, properties, and biomes. We then relate
ecosystem services to specific soil processes, soil properties, and soil
constraints and attributes. Soil degradation at present is not ade-
quately assessed and quantified. The use of an approach combining
digital soil maps, pedotransfer functions, remote sensing, spectral
analysis, and soil inference systems is suggested for simultaneous
characterization of various chemical, physical, and biological prop-
erties to overcome the great limitations and costs of conventional
methods of soil assessments.
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Ecosystem services:
as related to soil, are
those soil processes
that benefit
humankind
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INTRODUCTION

Soils are a key resource in the production
of food, feed, fiber, and fuels, and they also
play a central role in determining the quality
of our environment. Soil nutrients and wa-
ter, solar energy, and carbon dioxide (CO2)
are converted through plant uptake and pho-
tosynthesis into plant products that feed ani-
mals and humans and provide them with fiber
and fuels. Soils store water [so-called “green
water” (1)] from rainfall and irrigation and
hold nutrients added from organic or mineral
sources, releasing them at rates that sustain
plant growth. Soil biota decomposes organic
materials, cycles nutrients, and regulates gas
fluxes to and from the atmosphere. Soils fil-
ter nonhazardous as well as toxic substances
through clay surface adsorption and precipi-
tation reactions that determine the quality of
surface waters. These soil functions that ben-
efit humankind are referred to as ecosystems
services (2).

Soils deliver provisioning, regulatory, cul-
tural, and supporting ecosystem services. The
provisioning of food from crops and live-
stock grown on soils has increased by 170%
in the past four decades (1961–2003), the
production of timber by 60%, and the pro-
duction of fuels (mainly for firewood) and
fibers (cotton, wool, flax, hemp, sisal, and
jute) has probably increased by similar mag-
nitudes (3). These large increases in produc-
tion, however, have come with trade-offs that
include the degradation of soils and many of
the regulatory and supporting services they
provide (3), such as the regulation of hydro-
logical and nutrient cycles. These trade-offs
between provisioning and regulation services
will ultimately undermine the ability of the
ecosystems to provide food, fuel, fiber, and
water.

At the same time, the world is committed
to meeting the Millennium Development
Goals (MDGs) (4). Achieving many of the
MDGs depends directly or indirectly on the
ecosystem services of soils. Examples include
(a) reducing hunger (MDG 1), which depends
directly on the provisioning services of soils
that in turn depend on nutrient cycling, a sup-
porting ecosystem service; and (b) increasing
access to clean water and sanitation (MDG 7),
particularly for people living in rural areas,
which depends directly on the soil’s regulatory
services of filtering and detoxifying water.
Many of the health-related MDGs are indi-
rectly related to the services of soils (5); mal-
nutrition, related to insufficient food, reduces
the immune system making people more sus-
ceptible to infectious diseases such as malaria
and the earlier onset of HIV/AIDS. The
ability of soils to deliver the ecosystem ser-
vices required to meet the MDGs depends on
meeting MDG 7: to integrate the principles of
sustainable development into country policies
and programs and reverse the loss of envi-
ronmental resources. This will require sub-
stantial efforts in better management, as well
as the rehabilitation, of soils to continue to
provide these essential ecosystem services for
an increasing population.
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The purpose of this review is to put key
aspects of our knowledge of soils into a con-
temporary context relevant to the concept of
ecosystem services, the Millennium Ecosys-
tems Assessment (2, 3), and the challenge to
meet the MDGs (4, 6, 7).

Soils differ in their properties—their re-
source endowment or natural capital, the rate
of soil processes, and the ecosystem services
they provide as well as in their vulnerability
and resilience to degradation. We present a
review of (a) the different soils and the key
properties that distinguish them and (b) their
distribution by broad geographical regions
and by biomes. Then we describe the links
between soil properties, soil processes, and
ecosystem services, and how these relation-
ships differ among soils. We finish the chap-
ter with soil degradation, its causes, and the
processes involved and also include the past
problems and recent approaches of estimating
soil degradation and its impacts on ecosystem
services.

FRAMEWORK AND
BACKGROUND DEFINITIONS

The framework for discussing and comparing
soils is based on our premise that the natural
capital of soils that underlies ecosystem ser-
vices is primarily determined by three core soil
properties: texture, mineralogy, and soil or-
ganic matter. These key soil properties are in
turn determined by the variety of conditions
under which they are formed, the state factors
of soil formation: climate, organisms, topog-
raphy, parent material, and time (8–11). Soil
texture and mineralogy are inherent proper-
ties of the soil that do not generally change
with changes in land use and management,
although topsoil texture can be altered by ero-
sion. Soil organic matter levels in well-drained
conditions are determined by soil texture and
mineralogy but change dramatically with land
use and management. Secondary soil proper-
ties, such as aggregation, bulk density, nutri-
ent ions, and pH are determined by the com-
bination of these core soil properties, and they

Soil processes:
relate to inputs,
losses, and transfers
of material and
energy within the
soil or dependent on
the soil

can be modified by management and thus im-
pact ecosystem services.

This overarching framework we propose
does not ignore the facts that soils are an inte-
gral part of ecosystems, natural and managed,
and that many soil processes occur as part
of larger ecosystem processes. These linkages
are essential and explicit in the soil forming
factors. For thorough discussions on the links
and feedbacks between soils, vegetation, and
ecosystem processes, we refer the reader to
References 9, 11–15. Nor are we downplay-
ing the role of soil biota as a determinant of
many soil processes. We do not, however, dis-
cuss soil biota explicitly or the larger issue of
soil biodiversity and ecosystem function; for
this we refer the reader to References 16–21.

Soil texture determines the surface area
and, to a large extent, the pore space of soils. It
thus directly influences many other soil prop-
erties and can be considered an indicator of
many ecosystem processes (22). Texture de-
termines soil bulk density, total soil porosity,
and pore size distribution, which in turn affect
the total and available water-holding capac-
ity, hydraulic conductivity, and the oxidation-
reduction status. These combined properties
affect the movement of water in the soil,
chemical and biological transformations, and
the exchange of gases with the atmosphere.
Texture is a primary determinant of soil or-
ganic matter content, except in waterlogged
soils.

Mineralogy includes both primary minerals
in the sand and silt fractions and secondary
minerals in the clay fraction (23). Mineralogy
determines inherent soil fertility through the
type of weatherable minerals present in the
sand and silt fractions of the soil and the num-
ber of ion exchange sites on the clay minerals
(24, 25). Primary minerals in the soil are deter-
mined by the parent material (geology). The
weatherable primary minerals (feldspars, mi-
cas, volcanic glass, olivine, apatite, and others)
provide the reservoir of all nutrients, except
nitrogen (N), that are made available to plants
in time. Other primary minerals such as quartz
contain no weatherable nutrients. Secondary
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ECEC: effective
cation exchange
capacity

minerals are those formed in the soil through
weathering processes and occur in the clay
fraction. They can be classified in two groups:
those with permanent charge, whose ECEC
(effective cation exchange capacity) does not
change with pH, and those with variable
charge, where ECEC increases with increas-
ing soil pH. The main permanent charge clay
minerals in order of descending ECEC are
smectites, chlorites, vermiculites, hydroxy-
interlayered minerals, and hydrous micas.
The main variable charge clay minerals, again
in descending order of ECEC are allophane,
imogolite, halloysite, gibbsite, goethite, fer-
rihydrite, kaolinite, and amorphous iron and
aluminum oxides and hydroxides (26, 27). The
predominant cations in soils are determined
by the release of weatherable minerals and clay
mineralogy. The basic cations calcium (Ca2+),
magnesium ion (Mg2+), and potassium (K+)
are essential for plant growth, whereas the
main acidic cation (Al3+) is toxic to plants.
Clay mineralogy also influences the soil struc-
ture, porosity, and stability through formation
of microaggregates (28).

Soil organic matter is an integrator of many
soil properties and can serve as an index of
the capacity of the soil to provide certain
processes (29, 30). The type and distribution
of soil organic matter are biologically deter-
mined by the type of vegetation, climate, and
soil biota. Soil organic matter content is the
balance between the addition of organic in-
puts to the soil and decomposition by soil
biota. It provides the carbon and energy for
soil organisms and thus also supports the bi-
ological functions of soil. Soil organic matter
is physically determined first by soil texture,
which affects the surface area of the soil, and
second by mineralogy, which affects the na-
ture of organo-mineralcomplexes (31). Clayey
soils have higher soil organic matter content
than sandy soils because of higher surface area
for the formation of organo-mineral com-
plexes, and they also form more micropores
where organic particles can be physically pro-
tected from decomposition. Soil organic mat-
ter is a major binding agent in the formation

of macroaggregates in 2:1 clay-dominated
soils because polyvalent metal-organic mat-
ter complexes form bridges between the neg-
atively charged 2:1 clay platelets. However, in
oxide and 1:1 clay mineral-dominated soils,
soil organic matter is not the only major bind-
ing agent (32); part of the soil stability in these
types of soils is induced by the binding capac-
ity of oxides and 1:1 minerals (28, 33).

Soil organic matter affects the soil’s capac-
ity to retain and release nutrients for plant
growth by contributing to its ECEC and
through the mineralization of organic N,
phosphorus, and sulfur. Soil organic matter,
along with texture, affects the soil’s capacity
to store and release water and affects the ex-
change of gases with the atmosphere by influ-
encing the aggregation of soil particles, soil
pore size distribution, and bulk density. Soil
organic matter also serves in detoxification
through chelation of toxic elements.

The characteristic mineralogy, texture,
and soil organic matter of any specific soil be-
gins with composition of the parent material
and involves a series of biogeochemical pro-
cesses including energy and water exchange as
well as biocycling, which depend on the cli-
mate, vegetation type, and soil biota. Details
on soil formation and the relationship of the
state factors and resulting soil characteristics
can be found in References 8 and 9. These
three core soil characteristics are so central in
defining the nature of the soil that they are
also used to differentiate and classify soils.

SOIL CLASSIFICATION
AND GEOGRAPHY

Soils are classified and mapped according
to natural or technical classification systems.
Natural systems characterize and classify soils
as they exist, and technical systems classify
soils according to their suitability for spe-
cific uses. Details of two commonly used nat-
ural and technical classification systems and
the geographic distribution and extent of the
classes from these different systems are pro-
vided below.

102 Palm et al.
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Soil Classification

There are two international soil classifica-
tion systems: Soil Taxonomy developed by
the United States Department of Agricul-
ture (34) and the World Reference Base for
soil resources that succeeds the Food and
Agriculture Organization (FAO)-UN Educa-
tional, Scientific and Cultural Organization
(UNESCO) classification system (35). Both
systems are widely used throughout the world
and are freely downloadable from the Inter-
net. Relationships and translations between
the two and other natural soil classification
systems can be found in Reference 9.

Soil Taxonomy is a hierarchical system
with six categories: order, suborder, great
group, subgroup, family, and series. The sys-
tem is based on quantitatively defined diag-
nostic soil horizons and measured properties
that define the different classes. For the pre-
cise, highly quantitative descriptions of the
soil classes readers are referred to References
9, 34, and 36. The data embedded in the tax-
onomic name is a useful code that defines the
soil in quantitative terms. Its use, however, is
often hampered by the seeming complexity of
the nomenclature. An example of the informa-
tion conveyed by the name is illustrated by the
classification of a typical, highly weathered red
soil of the humid tropics as a clayey, kaolinitic,
isohyperthermic Rhodic Acrudox. This name
contains the following information:

� ox = Oxisol order: The soil contains an
oxic horizon with low activity clays and
a low ECEC.

� ud = Udox suborder: The soil has a
udic soil moisture regime, meaning the
subsoil is moist for 9–12 consecutive
months.

� Acr = Acrudox great group: The soil
has very low ECEC and pHKCl > 5.0.

� Rhodic = Rhodic subgroup: The soil
has a deep red color (2.5YR or redder),
denoting high iron oxide content.

� The three family terms are isohyperther-
mic, which indicates a hot, aseasonal
soil temperature regime (>22◦C mean

FAO: UN Food and
Agriculture
Organization

annual with <6◦C seasonal variation);
kaolinitic, which indicates the dominant
clay mineral; and clayey, which indicates
the soil has more than 35% clay.

Once this classification system is understood,
the name imparts much about the character-
istics of the soil.

Soil Orders and Geographical
Distribution

The extent of the 12 soil orders of Soil Tax-
onomy and their geographical distribution
were determined using the U.S. Department
of Agriculture’s (USDA’s) Global Soil Re-
gions data set (37), which is based on a re-
classification of the FAO-UNESCO Digi-
tal Soil Map of the World combined with
a soil climate map (Table 1 and Figure 1)
(38). The tropics, temperate, and boreal zones
account for 38%, 50%, and 12% of the
world’s land area, respectively; however, the
distribution of soils does not follow that ge-
ographic breakdown in distribution: 97%,
71%, and 65% of Oxisols, Ultisols, and Ver-
tisols, respectively, are in the tropics, but
less than 1% of Spodosols or Gelisols are
in the tropics; 95% of Mollisols and 76% of
Aridisols are in the temperate region; and 76%
of Gelisols are in the boreal region. The dis-
tribution of other soil orders is similar in pro-
portion to the areal coverage of those zones
globally.

The distribution of soils by natural biomes
(Tables 2a and 2b) was obtained by overlays
of the soil map with that of the world’s biomes
(39). Biomes are large geographic areas with
similar climates and distinct groups of plants
and animals. Soils and climate also interact
to determine the vegetation structure and
composition, and as such, relationships
between soils and biomes emerge (40). In
the discussion that follows, a soil order
is considered prevalent in a biome if it
encompasses more than 20% of the area, and
highly prevalent is more than 35%. Of the
156 combinations of the 12 soil orders × 13
biomes, only two cells have prevalence higher
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Table 1 Distribution of 12 Soil Taxonomy orders by major geographical regiona

Tropicalc Temperatec Borealc World

Orderb 106 ha % 106 ha % 106 ha % 106 ha %
Entisols 1267 26.8 1055 17.1 31 2.0 2353 19.0
Inceptisols 470 9.9 1154 18.7 362 24.0 1986 16.0
Aridisols 376 8.0 1187 19.3 3 0.2 1565 12.6
Alfisols 561 11.9 736 12.0 22 1.4 1319 10.6
Gelisols 1 0.0 281 4.6 900 59.6 1181 9.5
Ultisols 757 16.0 303 4.9 0 0.0 1061 8.6
Oxisols 956 20.2 31 0.5 0 0.0 987 8.0
Mollisols 48 1.0 866 14.1 0 0.0 913 7.4
Spodosols 5 0.1 286 4.6 168 11.1 458 3.7
Vertisols 206 4.4 110 1.8 1 0.1 318 2.6
Histosols 31 0.7 100 1.6 21 1.4 152 1.2
Andisols 48 1.0 47 0.8 2 0.2 98 0.8
Total 4726 100.0 6155 100.0 1510 100.0 12392 100.0

aEstimates exclude areas not covered by soils (e.g., rocks, water bodies, shifting sands, ice) (38).
bArranged in descending order of areal extent.
cDefinitions: tropical, <23.5◦; temperate zone, 23.6◦–60◦; boreal, >60◦.

Nutrient capital:
the stocks of N, P, K,
Ca, Mg, S, Fe, Mn,
Zn, B, Mo in the
topsoil and subsoil.
Nutrient capital is
found in the
weatherable minerals
and in soil organic
matter

than 50%, underscoring the high spatial vari-
ability of soils. A short description of the soil
orders in decreasing order of area coverage
follows.

Entisols are the most extensive soils world-
wide. They are young because of only slight
horizon development and generally have high
nutrient capital, being high in weatherable
minerals. Exceptions are sandy Entisols with
very low nutrient capital. Entisols are highly
prevalent only in the desert biome and preva-
lent in the tropical savannas and Mediter-
ranean biomes.

Inceptisols, the second most extensive soils,
are also considered young soils with some soil
horizonation and high nutrient capital, ex-
cept for sandy infertile ones. Inceptisols are
prevalent in boreal forests, temperate conif-
erous forests, temperate mixed forests, mon-
tane grasslands, Mediterranean and tropi-
cal/subtropical coniferous forests.

It is interesting to note that the two
“youngest” soil orders are the most extensive,
covering 35% of the world’s land area; this is
due in part to the natural erosion and sedi-
mentation processes occurring, both of which
counteract the formation of soil horizons and

aging. Many are alluvial, in fertile river val-
leys, and are the best agricultural soils as well
as where much of the Green Revolution in
Asia, Latin America, and the Middle East took
place. Texture, soil organic matter, and clay
mineralogy in Entisols and Inceptisols vary
considerably. With climatic change-induced
rainfall variability and intensity, many Enti-
sols and Inceptisols located on alluvial plains
may be more susceptible to droughts, floods,
and river erosion, which may have broad im-
plications for food production.

Aridisols, the third most extensive soil or-
der, are the soils of deserts with some hori-
zon differentiation. They are usually high in
weatherable minerals, but low in soil organic
matter, and variable in texture and clay miner-
alogy. They are highly prevalent only in desert
biomes, are not prevalent elsewhere, but in-
clude many saline and alkali soils of nondesert
regions. Many Aridisols are irrigated and thus
vulnerable to increasing salinity as the good
aquifers become depleted and saline waters
replace them.

Alfisols are deep, have high nutrient capi-
tal, are not acid and are therefore of generally
high fertility. Topsoil texture varies, and clay

104 Palm et al.
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mineralogy is mixed with both permanent and
variable charged clays. Alfisols cover much
of the farmlands in previously forested parts
of midwestern North America, Europe, and
Russia, as well as much of subhumid and semi-
arid tropical Africa and India. Alfisols are not
highly prevalent in any biome but are preva-
lent in 5 of the 13 biomes: flooded grasslands
and savannas, temperate broad-leaved and
mixed forests, tropical/subtropical dry broad-
leaved forests, tropical/subtropical coniferous
forests, and Mediterranean biomes. Alfisols in
tropical Africa are increasingly threatened by
nutrient depletion (5, 41, 42), more frequent
droughts in Southern Africa, and more in-
tense erosion caused by increasingly erratic
rainfall variability.

Gelisols are soils with permafrost found in
boreal regions and near glaciers in high moun-
tains, even in the tropics. Gelisols are highly
prevalent in the tundra and montane grass-
land/shrubland biomes and prevalent in the
boreal forests/taiga. They vary in texture and
mineralogy but have high soil organic mat-
ter contents. These soils are severely threat-
ened by global warming. The combination of
high soil organic matter content and the ex-
tensive coverage of these soils will result in
the release of large amounts of CO2 as the
soils warm and decomposition rates increase
(9).

Ultisols look similar to Alfisols but are
acid and have low nutrient capital, and clay
mineralogy is dominated by variable charge,
1:1 clays. Ultisols are common throughout
the humid and subhumid tropics as well as
nonglaciated temperate regions, such as the
southeastern United States and southeast-
ern China. They are only prevalent in the
tropical/subtropical moist broad-leaved for-
est biome. Over half of the Ultisols are found
in the tropical/subtropical moist broad-leaved
forest biome and another 20% in tropical sa-
vanna biome.

Oxisols, the stereotypic tropical soils, with-
out contrasting horizons, are similar to Ul-
tisols in that they are acid, have low nutrient
capital and have 1:1 clays, iron, and aluminum

oxides. Oxisols have similar soil organic mat-
ter content to temperate Mollisols (43). They
occupy 20% of the tropics, virtually all in
the humid and subhumid tropics. Oxisols
are prevalent only in the tropical/subtropical
moist broad-leaved forest biome and the
tropical/subtropical savanna biome, includ-
ing the Brazilian Cerrado (44). Sixty-five per-
cent of the Oxisols are located in the tropi-
cal/subtropical moist broad-leaved forest and
another 33% in tropical savanna biome. Many
of the Ultisols and Oxisols in the tropics are
under natural forest; once the land is cleared
for cultivation, they quickly lose soil organic
matter and soil fertility; and unless they are
put under tree-based cropping systems, they
require intensive fertilization and often lim-
ing. Oxisols are less vulnerable to erosion than
Alfisols and Ultisols owing to their stable ag-
gregate structure (26). Extensive areas un-
der Oxisols and Ultisols in the Amazon Basin
are predicted to become drier with changing
climate.

Mollisols are the stereotypic black soils of
the temperate zone grasslands of the U.S.
Midwest, Russian heartland, and Pampas of
Argentina. They are high in topsoil organic
matter and high in nutrient capital and have
permanent-charge clay minerals. They are ex-
cellent soils both in terms of fertility and phys-
ical properties. They are highly prevalent in
the temperate grassland/shrubland biome, but
they are not prevalent in the other biomes.
This stereotypic temperate soil accounts for
only 14% of the temperate region, but 58% of
Mollisols are located in temperate grasslands
and another 14% in temperate broad-leaved
forests. Mollisols are being degraded through
severe erosion losses in the intensively farmed
areas of the U.S. Midwest.

Spodosols, also known as podzols, are the
typical sandy soils of northern temperate re-
gions such as northeastern North America
and Scandinavia, usually developed under
coniferous forests. Spodosols are both acid
and infertile and have low nutrient capital.
They are prevalent in the boreal forest/taiga
biome. Although Spodosols cover only 0.2%
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Pedotransfer
functions: rules for
translating available,
easily or affordably
measured soil
properties to more
complex or
difficult-to-measure
soil properties

of the tropical/subtropical moist broadleaf
forest biome, they received disproportionate
attention in early nutrient cycling studies (45),
leading to several misconceptions about soils
of the humid tropical forests (46).

Vertisols are the clayey, black soils that crack
when dry and swell when wet. They have diffi-
cult physical properties but high nutrient cap-
ital and permanent-charge clay minerals. Soil
organic matter contents are not high in spite
of their clayey textures. They cover large areas
of Texas and Mexico, much of central India,
tropical Australia, and the Ethiopian high-
lands. They are not prevalent in any biome
but are associated with tropical/subtropical
dry broad-leaved forests and flooded grass-
lands and savannas, systems that have distinct
wetting and drying cycles.

Histosols are organic or peat soils, with
more than 12% organic carbon in the topsoil.
They are wet, have low bulk density, subside
when drained and because of their high or-
ganic content usually have low nutrient capital
reserves and exhibit pronounced N and cop-
per deficiencies. The concept of texture is not
relevant in Histosols. They are found in boreal
regions of Canada, Finland, and Russia, and
they also occur in Florida, North Carolina,
and Indonesia. Histosols are currently threat-
ened by expansion of agriculture in Indone-
sia, which contains large expanse of peatlands.
With prolonged droughts caused by El Niño,
these peats are also drying and catching fire
from land-clearing activities; both the expan-
sion of agriculture and burning of peat release
of large amounts of CO2 to the atmosphere
(47).

Andisols, the least extensive soil order, de-
velop from volcanic materials. They usually
have excellent physical properties and high
nutrient capital. The high phosphorus reten-
tion of the noncrystalline minerals results in
phosphorus deficiencies, although they sup-
port intensive agriculture. These young, fer-
tile soils support some of the highest rural
population densities. Andisols are not preva-
lent in any biome but occupy 12% of the
tropical/subtropical coniferous forests along

volcanic mountain chains around the Pacific
Basin “ring of fire.”

Limitations of soil maps. Maps and tabu-
lar data of soil taxonomic groups are use-
ful for making broad distinctions among soil
types and provide general trends at the global
and regional scales but have limitations when
applied at higher levels of resolution. Soils
mapped at the 1:5 million scale are based on
the dominant soil unit, even though the area
is comprised of many soil types, thus over-
estimating the extent and importance of the
dominant soil. Many of these polygon maps
are also quite old and are based on very few
soil profiles. The South America sheet of the
world soil map was published in 1970, with
very limited observations of remote areas in
the western Amazon in Brazil and Peru. These
areas were mapped as Oxisols, whereas recent
maps at much higher resolution show that
there are essentially no Oxisols in the Amazon
of Peru. There are large areas of many coun-
tries, particularly in the tropics, where soil
units are not based on even a single soil pro-
file. Legacy data sets can be found throughout
the tropics and elsewhere, but the amount of
effort needed to find, evaluate, and digitize
this information must be balanced against the
quality and age of the data (48). The most use-
ful maps for management are at resolutions of
1:50000 or 1: 25000 and exist for only a few
countries such as the United States and Cuba.

Within the past decade, there has been
considerable progress in assessing soil prop-
erties by data generated from remote and on-
ground sensors and in prediction of soil types
and properties by combining geospatial soil
information with digital elevation models, re-
mote sensing images, and existing soil maps
(Figure 2) (49, 50). Soil properties for large
areas can thus be predicted and mapped us-
ing regression, kriging, or a combination of
both. The spatially inferred soil properties can
then be used to predict soil properties, such
as field capacity and available water capacity,
using pedotransfer functions. Such products
could be useful for modeling individual and

108 Palm et al.
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Soil information system

Climate

Soil observations

DTM

DEM

Remote sensed images

Existing soil maps

Pedotransfer 
functions

Soil inference system

Field capacity

Bulk density

EC

pH

CEC

Organic C

Thickness

Clay

Spatial soil inference system

Sand

Spatial soil 
prediction functions

Available water

Soil functions

Permeability

Figure 2
Information and processes for digitial soil mapping. Adapted from Reference 50. Abbreviations: CEC,
cation exchange capacity; DEM, digital elevation model; DTM, digital terrain model; EC, electrical
conductivity.

integrated soil functions over broader areas.
Examples of these digital soil maps and the
methods used to construct them can be found
in References 51 and 52. Such digital soil maps
are pixel based, in comparison with digitized
soil maps, which remain polygon based. Ef-
forts to produce a digital soil map at suffi-
cient resolution are essential to increase our
capacity to use information on the distribu-
tion of soil properties and processes at land-
scape and larger levels for modeling ecosys-
tem processes.

Soil Attributes and Constraints

Soil Taxonomy is based on more permanent
soil properties mostly located in the sub-
soil; therefore, it does not capture the dy-
namic soil parameters or features of the top-
soil that are crucial to plant productivity and
so has limited use for land use and man-
agement considerations. The fertility capabil-
ity classification (FCC) system was developed
30 years ago to interpret the soil profile de-
scriptions used in soil taxonomy in terms of

FCC: fertility
capability
classification system

Soil attributes and
constraints:
properties of soils
that effect soil
processes and
ecosystem services

soil constraints for crop production (53), and
although it is also based on the more perma-
nent soil properties, it does focus on the top-
soil. It is now widely used (54, 55).

A digitized soil FCC map and database was
constructed (38) with the ISRIC-WISE-2 soil
attribute database (56), the FAO soil map, and
the latest version of the FCC system (57).
The extent of the FCC soil attributes or con-
straints is shown by regions in Table 3 and by
biomes in Tables 4a and 4b. Although origi-
nally designed for constraints to crop produc-
tion, its use in assessing other soil processes
and ecosystem services is explored. Soil at-
tributes and constraints can be divided into
physical and chemical groupings; however,
the only biological attribute included in FCC
is soil organic carbon saturation. The top cat-
egory for classification in FCC is topsoil tex-
ture, indicating the overriding importance of
this property to soil functions.

The FCC attributes are described in
descending order of areal extent by region
and biome. Detailed descriptions including
quantitative definitions can be found in

www.annualreviews.org • Soils: A Contemporary Perspective 109
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Table 3 Distribution of soil attributes by latitudinal belta,b

Attributes and Tropicald Temperated Boreald

Total area
under each
attributee

constraintsc % 106 ha % 106 ha % 106 ha % 106 ha
Soil moisture stress d 43.6 2154.9 20.9 1381.4 0.3 4.8 27.1 3541.1
Aridic d+ 25.8 1272.7 38.4 2535.6 0.2 3.6 29.2 3811.9
High erosion risk y 15.4 758.1 18.1 1194.0 17.3 264.0 17.0 2216.1
Low nutrient capital
reserves k

36.5 1803.5 9.9 652.6 7.7 116.9 19.7 2573.0

Calcareous b 6.9 342.4 22.2 1464.1 2.7 40.6 14.1 1847.0
Permafrost t+ 0.3 12.7 12.2 805.1 84.7 1289.4 16.1 2107.2
Aluminum toxic a 27.8 1374.6 7.7 507.4 5.9 90.4 15.1 1972.3
Cold t 0.4 20.9 17.7 1168.4 11.2 170.4 10.4 1359.7
Waterlogged g 8.5 419.0 9.6 634.7 34.3 522.2 12.1 1576.0
High P fixation i 10.5 519.8 1.7 112.6 0.0 0.0 4.8 632.4
High leaching potential e 9.0 443.2 1.8 117.7 0.0 0.1 4.3 561.0
High organic content O 0.9 44.6 2.4 160.9 12.7 194.2 3.1 399.7
Cracking clays v 4.5 220.2 1.6 104.2 0.0 0.7 2.5 325.1
Sodic n 1.6 81.3 3.0 197.0 0.3 4.4 2.2 282.7
Saline s 0.7 35.3 2.4 157.5 0.0 0.0 1.5 192.8
Volcanic x 0.5 24.2 0.5 33.1 0.0 0.3 0.4 57.6
Sulfidic c 0.3 12.5 0.0 0.5 0.0 0.0 0.1 13.1

aArranged in descending order of world total.
bEstimates exclude areas not covered by soils (e.g., rocks, water bodies, shifting sands, ice).
cLetters are the FCC modifier symbols (33).
dDefinitions: tropical, <23.5◦; temperate zone, 23.6◦–60◦; and boreal, >60◦.
eThe sum of percentages exceeds 100 because a single soil usually has more than one attribute.

Reference 57. Only attributes covering 10%
or more of one of the regions are described in
detail below. Maps indicating the global dis-
tribution of the soil constraints are available at
http://sedac.ciesin.columbia.edu/soils/fcc.

Soil Physical Attributes

Soil physical attributes, in addition to texture,
are related to climate (specifically temperature
and moisture regimes) and topography. One
additional physical constraint, soil cracking, is
related to the soil mineralogy.

Seasonal soil moisture stress (d modifier)
and aridity (d+ modifier). Lack of avail-
able water in the soil during parts of the
year is the most extensive soil constraint for
plant growth, encompassing about 57% of the

world’s soils; some of these soils have enough
water for one annual rain-fed crop (seasonal
soil moisture stress), and others require irri-
gation to grow any crop (aridity). Dryness is
influenced by soil texture, depth of the mois-
ture control section, and related soil water-
holding capacity, meaning that some soils
are dry while others are not under the same
rainfall (34).

The presence of dry seasons longer than
three months characterizes subhumid and
semiarid climates and is a constraint to crop
production in about 44% of soils in the trop-
ics and 21% in the temperate region. Biomes
with high prevalence (>35%) of seasonal
soil moisture stress are: tropical/subtropical
dry broadleaf forest, including most of
unimodal subhumid tropical Africa in
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the Miombo woodlands, Mediterranean,
tropical/subtropical savannas, flooded grass-
lands/savannas, and tropical/subtropical
coniferous forests. More than a quarter
of the tropical/subtropical moist broadleaf
forest biome even has the soil dry for more
than three months. The soils of the eastern
and southern Amazon Basin have seasonal
moisture stress, whereas the western Amazon
does not (58).

Seasonal moisture stress affects not only
crop growth but also rates of primary produc-
tion, soil microbial activity, and soil pest and
disease life cycles. When dry seasons fail to
occur, pest attacks can be stronger in the fol-
lowing planting season. Long dry seasons in
the tropics slow down N mineralization and
leaching. When the rains come, there is a flush
of N mineralization, producing ammonium
and nitrate ions that young plants can read-
ily utilize (59).

About 29% of the world’s soils are arid,
with higher prevalence in the temperate zone
(38%) than in the tropics (28%). Biomes with
high prevalence of aridity are deserts and tem-
perate grasslands; aridity is prevalent in the
Mediterranean and the tropical/subtropical
savannas.

High soil erosion risk (y modifier).
Whereas all soils, even flat ones are suscep-
tible to wind and water erosion, only 20%
are at a high risk of erosion that can result
in loss of fertile topsoil, affecting watershed
stability, sedimentation, and subsequent eu-
trophication of rivers and lakes. Erosion can
continue in these high risk soils even under
natural vegetative cover. Once the vegetation
is removed, erosion is excessive, and soils on
less steep slopes also become susceptible. It is
also important to realize that erosion is a nat-
ural process that produces fertile alluvial soils
with high productivity, which is where most
civilizations first settled (60).

Over half the biomes have soils with
a prevalence of high erosion risk: trop-
ical/subtropical coniferous forest, temper-
ate coniferous forest, temperate broadleaf

and mixed forest, tropical/subtropical moist
broadleaf forest, montane grassland and
shrubland, tropical/subtropical dry broadleaf
forest, and Mediterranean biomes.

Permafrost (t+ modifier) and cold soils
(t modifier). Soils that are frozen through-
out the year occupy 16% of the land area
(2.1 billion hectares), the bulk of them are in
the boreal region, but they also occur at high
altitudes in the temperate region and even in
12 million hectares in the tropics. They dom-
inate the tundra and the boreal forest/taiga
biomes.

Cold soils cover 10% of the world, are
highly prevalent in the temperate conifer-
ous forest biome (49%), and are prevalent in
the boreal forest/taiga, temperate grasslands,
montane grasslands, and temperate broad-
leaved/mixed forest biomes. These soils sup-
port slow plant growth, microbial activity, and
nutrient cycling in spite of favorable soil mois-
ture or fertility but, as with permafrost soils,
are susceptible to global warming.

Waterlogged soils (g modifier). Poorly
drained soils cover 10% of the world’s land
area and are more prevalent in the bo-
real zone (34%) than in the temperate and
tropical zones (9% and 6%, respectively).
Waterlogged soils are highly prevalent in
mangroves and prevalent in the tundra, bo-
real forests/taiga, and flooded grassland sa-
vannas. These soils are chemically reduced
and have many different biogeochemical pro-
cesses compared to soils in the oxidized
state (61); they are also a primary source of
methane. In Asia, many of these soils have
been converted to rice paddies and to aquacul-
ture, supporting intensive agriculture. Others
remain as natural wetlands but are threatened
by urbanization, eutrophication, and large-
scale engineering projects.

Soil Chemical Attributes

Soil chemical attributes are related to miner-
alogy and soil texture as well as to the degree
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of weathering, which affects loss or accumu-
lation of exchangeable ions.

Low nutrient capital reserves (k modifier).
About 36% of tropical soils have less than 10%
reserves of weatherable minerals in their sand
and silt fractions; in contrast, most soils in the
temperate (90%) and boreal (92%) zones still
have high nutrient capital reserves (Figure 3).
Although highly prevalent in the tropics, these
soils show highest prevalence in the tropi-
cal/subtropical moist broadleaf forest (53%),
tropical/subtropical grasslands, savannas, and
shrubland (37%); but they show low preva-
lence in the tropical/subtropical dry broad-
leaved forests and the tropical/subtropical
coniferous forest. As such, this modifier is use-
ful for indicating highly weathered soils in the
humid and subhumid tropical regions and is
often associated with kaolinitic and oxidic clay
mineralogy.

The other source of nutrient capital re-
serve is soil organic matter, which contains
all the N and much of the phosphorus and
sulfur capital of soils. There is currently no
quantitative definition for organic N capital,
although soils with high nutrient capital often
have high quantities of soil organic N.

Calcareous reaction (b modifier). These
young soils are high in nutrient capital but are
often deficient in micronutrients, particularly
iron and zinc, and have imbalances between
potassium, calcium (Ca), and magnesium,
which can affect plant production. Calcareous
soils are highly prevalent in temperate grass-
lands and prevalent in the Mediterranean,
desert, and flooded grasslands.

Aluminum toxicity (a modifier). High lev-
els of aluminum on cation exchange sites and
in the soil solution is the main component of
soil acidity. Generally associated with highly
weathered soils with small amounts of basic
cations, the result is aluminum levels that are
toxic for most crop species (62). This con-
straint is usually identified with a soil pH value

less than 5.5 and is highly correlated with soils
having low nutrient capital reserves.

About 27% of soils in the tropics, but less
then 10% of the temperate and boreal soils,
exhibit this constraint. Aluminum toxicity is
highly prevalent in the tropical/subtropical
moist broad-leaved forest biome and preva-
lent in the tropical/subtropical savanna
biome. Aluminum toxicity is usually the over-
whelming constraint to crop agriculture in
these soils.

High phosphorus fixation (i modifier).
High phosphorus fixation by iron and alu-
minum oxide is found in only 5% of the
world’s soils and is usually considered typical
of tropical soils, even though only 10% of
the tropical soils have the constraint. These
soils are usually red or yellowish. Most sandy
red soils do not fix significant quantities of
phosphorus. Crop production in such soils is
usually constrained by phosphorus because its
of limited bioavailability. Large “investment”
applications of phosphorus fertilizers in
P-fixing soils can, however, become a phos-
phorus capital reserve (63), with subsequent
phosphorus release for several years for
crop production (44). Soils with this type of
phoshorus fixation are most extensive in the
humid tropics and tropical savannas but are
also important in subhumid East Africa. This
modifier is only prevalent (21%) in the tropi-
cal/subtropical moist broadleaf forest biome.

There is also phosphorus fixation by the
amorphous allophanic minerals of volcanic
soils, but the mechanism is different and is
described by the “x” modifier and covers only
0.4% of the world’s soils.

High organic content (O type). This
constraint relates directly to the Histosol
soil order. Organic soils are characterized
by wetness, low bulk density, low fertility
(particularly in N and micronutrients). Those
organic soils with pH below 4.2 can actually
trigger hydrogen (H3O+) toxicity. They
cover only about 3% of the world’s soils,
mostly in the boreal region (12.7%). They are
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not prevalent in any biome but occupy 16%
of the boreal forest/taiga and 9% of both the
tundra and mangrove biomes. When drained,
soil organic C oxidizes to CO2 causing
subsidence of the soil surface and releasing
large amounts of carbon to the atmosphere.
These soils are difficult to manage.

Although we have listed soil constraints in-
dividually, it is as or more important to look at
the soils that have no soil constraints or at the
suite of constraints of individual soils, such as
the acid soils complex of low nutrient reserves,
Al toxicity, and P-fixation. Such suites of soil
attributes can be obtained through map over-
lays in the digital FCC. Use of such overlay
maps could provide an indication of the soil
type and the suite of soil processes that might
be predicted. The following section explores
further the use of FCC for characterizing soil
processes.

SOIL PROPERTIES, PROCESSES,
AND ECOSYSTEM SERVICES

The previous sections of the review have dealt
primarily with soil properties. Here, we will
relate specific soil properties to soil processes
and ecosystem services and compare them
among different soil types. Processes relate to
inputs, losses, transformations, and transfers
of material and energy within the soil or
are dependent on the soil. The Millen-
nium Ecosystem Assessment (2, 3) divides
ecosystem services into provisioning services,
products/goods obtained from ecosystems;
regulating services, such as greenhouse gas
emissions and associated climate regulation,
as well as erosion control and associated
effects on regulation of water flows and
availability; cultural services, which are non-
material benefits; and supporting services,
which are those services necessary for the
production of all other services. Provisioning
services depend on regulating services, and
both provisioning and regulating services de-
pend on supporting services. Indeed, many of
the supporting services such as soil formation,
nutrient cycling, and primary production are

all dependent on soil processes and indicate
the centrality of soils in the provision of
ecosystem goods and services.

Ecosystem processes and services provided
by soils and the biota within them have been
discussed in detail (13, 16–18, 55, 64). These
include provision of nutrients, provision of
water, regulation of biogeochemical cycles
(nutrient cycling), regulation of the water
cycle (runoff and erosion), bioremediation
of pollutants, suppression of soilborne pests
and diseases, and physical support for plants.
Many of these services are interrelated (64).

The degree to which soils exert different
ecosystem services depends on a suite of
soil properties (13, 29). Currently, there
are few explicit connections made between
specific soil properties and the resulting soil
and ecosystem processes that depend on
them. Predictive relationships between soil
properties and soil processes (pedotransfer
functions) are needed in order to understand
natural systems but also to manage systems
to favor and not degrade ecosystem services.
To develop these relationships, there must
be specific information about the key soil
properties, such as the percent of clay and
mineralogy, which together determine sec-
ondary soil properties, e.g., aggregation and
nutrient capital, which result in specific rates
of infiltration or nutrient supply. The next
step is to look at the combined soil processes
that together result in a quantitatively defined
ecosystem service.

In Table 5, we attempt to make these rela-
tionships more explicit: provisioning ecosys-
tem services (column 1) are linked to
soil/ecosystem processes (column 2), which
are in turn related to a hierarchy of measur-
able soil properties, secondary and key soil
properties (column 3), and determinants (col-
umn 4). Column 5 identifies the relevant FCC
types and modifiers that can be used to sig-
nal the magnitude of the soil constraints to
soil processes related to ecosystem services.
Parts of this framework are perhaps implicit in
the equations underlying many agricultural,
ecosystem, trace gas, or hydrological models
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Table 5 Relationships between provisioning ecosystem services, soil processes, soil properties, and core soil
determinants

Provisioning
ecosystem service

Ecosystem/ soil
process Soil property Core soil determinants

Relevant
FCC type or

modifiera

1. Physical support
for plants

Soil formation Depth State factors of soil
formation, clay mineralogy

Rb, y, v

2. Provision of
nutrients

Mineral
weathering

Type/amount of minerals in
silt/coarse sand fraction

Primary mineral type:
volcanic ash
>olivine>micas)

k

Soil organic
matter
mineralization

Soil organic matter quantity
and quality

Texture: soil organic matter
decomposes faster in sandy,
fertile, and warmer soils

S>L>Ccg, t

Decomposition of
organic
additions

Soil biota Same as above Same as above

Ion retention and
exchange

Effective cation exchange
capacity (ECEC), anion
exchange capacity

Texture: ECEC increases
with clay content

Mineralogy: ECEC in
permanent charge clays>
variable charge clays

Soil organic matter: ECEC
increases with soil organic
matter content

C>L>S

Toxicities Percent Al saturation, electrical
conductivity, percent
exchangeable Na, toxic levels
of Fe, Mn, B

Clay mineralogy pH a, s, n

3. Provision of water Infiltration Surface macroporosity,
hydraulic conductivity

Macroporosity- aggregation,
texture, bulk density, soil
organic matter, soil biota

S>L>C
Ci>Cv

Storage in soil Aggregation, bulk density,
depth

Texture, mineralogy,
soil organic matter

C>L>S
Ci, x

Drainage Macroporosity hydraulic
conductivity

Texture, mineralogy,
soil organic matter

S>L>C
Ci>Cv

aFCC modifiers that can distinguish soils with possible constraints to providing the desired ecosystem service are noted.
bR indicates rock or other hard root-restricting layer within 50 cm of the soil surface.
cS, L, and C indicate topsoil texture, other FCC modifers are in lower case letters.

(22, 65, 66), but we felt it could be useful to
explicitly frame studies on the levels of control
of many ecosystem services and to encourage
others to make more specific links among the
properties, processes, and ecosystem services
of soils. The tenet that ecosystem services are
ultimately determined by soil texture, miner-
alogy, soil organic matter is the foundation of
the table.

Table 5 can be used in various ways:

� To see how a specific ecosystem service
differs among soils

� To illustrate the interconnectedness of
many of the ecosystem services owing
to their reliance on a few key processes
and properties

� To illustrate that many soil properties
can contribute to one ecosystem service
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and that the dominant contributing soil
property to that service differs with
soils

� To provide a means of identifying which
soil processes and properties change
with different land and soil management
practices and how those changes affect
ecosystem services

A few examples of different ecosystem ser-
vices using contrasting soils follow. The dis-
cussion focuses first on undisturbed soils, as
they would be in natural ecosystems, to com-
pare differences among soils. Then examples
of changes in soil properties with land conver-
sion and management and with their impacts
on ecosystem services are compared for differ-
ent soils as an introduction to soil degradation.

The provisioning ecosystem services of
soils for plant production are the physical
support for plants and the supply of nutri-
ents and water. The suite of soil processes
involved in nutrient supply includes min-
eral weathering, mineralization of soil or-
ganic matter and organic inputs, and reten-
tion and exchange of ions. In addition, soil
acidification and salinization can inhibit plant
growth through the excess aluminum, iron,
manganese, and sodium on exchange sites.
The magnitude of these soil processes is re-
lated to measurable soil properties. The sim-
plest case in distinguishing soils is through
the amount of weatherable minerals, the k
modifier. Some soils with similar clay and
soil organic matter contents, such as Mol-
lisols and Oxisols, can have drastically dif-
ferent nutrient provisioning capacity. In ad-
dition to the presence of weatherable min-
erals, Mollisols have a high cation exchange
capacity from the permanent charge clays,
with the exchange sites dominated by basic
cations. Oxisols, in contrast, have virtually no
weatherable minerals and have an extremely
low ECEC owing to kaolinitic and oxidic clay
minerals, and their exchange sites are dom-
inated by acidic cations. The only source of
nutrient capital in Oxisols is soil organic mat-
ter. The FCC symbols of Caek for Oxisols

and C for most Mollisols adequately indi-
cate these differences in nutrient supplying
capacity.

In natural systems, soil fertility in Oxisols
is maintained through nutrient cycling. With
removal of vegetation for conversion to agri-
culture, the soil organic matter, which is the
only source of nutrients, is quickly depleted,
and crop yields decline dramatically in just
one or two years. In contrast, when Mollisols
are converted to agriculture, there is also a
drop in soil organic matter, but crop yields
can be maintained without external inputs for
decades owing to the weatherable minerals
and high nutrient-buffering capacity provided
by the high ECEC (26). Both soils exhibit
a degradation of soil organic matter, but the
rates at which they impact on plant produc-
tion are quite different.

The provision of water for crop produc-
tion is related first to the soil process of
infiltration and then to the storage and re-
lease of water from the soil. A comparison of
Mollisols, Vertisols, and Oxisols illustrates the
affect of mineralogy on these soil processes,
assuming they have similar clay contents.
Mollisols and Oxisols have high infiltration
capacities, whereas that of Vertisols is much
less. Mollisols are highly porous because of
macroaggregation related to the high soil or-
ganic matter content in the topsoil. The low
infiltration rates of Vertisols arise from lower
soil organic matter and less aggregation but
also from the smectitic clay mineralogy. When
wet, these clays swell, reducing the porosity,
and water infiltration essentially stops. In
Oxisols, the oxidic clay mineralogy results in
the strong aggregation of primary clay parti-
cles into stable sand-sized aggregates—with
the macroporosity and high infiltration more
similar to those of sandy soils. Although the
water-holding capacity of these three soil
types might be similar because of the clay and
soil organic matter contents, the plants’ avail-
able water differs, being higher in Mollisols
and Vertisols but lower in Oxisols because
more water is lost through macropores
(26).
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Upon conversion to agriculture, infiltra-
tion rates decrease resulting in declines in
soil organic matter and macroaggregation, in-
creases in bulk densities from compaction, and
loss of soil macrofauna involved in the ag-
gregation of soil particles and maintenance of
large pores (67). The reduction in infiltration
is less in Oxisols than the other soils, owing to
the stable aggregation from 1:1 clays and iron
and aluminum oxides. The initial low infiltra-
tion rates of Vertisols combined with manage-
ment to destroy soil aggregates are exploited
purposefully to puddle soils for paddy rice
cultivation.

Reduction in infiltration also affects water
runoff and soil erosion. High aggregate sta-
bility and the presence of low dispersivity of
a kaolinitic (1:1 clay) soil have been shown to
minimize soil particle detachment and sedi-
ment transport, and these limit the soil loss
to 0.33 kg m−2, whereas the low aggregate
stability and high runoff of a smectitic soil
contributes to soil losses of 1.24 kg m−2 in
a specific example (68).

The following examples of regulatory and
supporting ecosystem services that depend
on soil properties also illustrate the interac-
tions between soils and the characteristics of
the ecosystem, including vegetation type and
quality of litter.

Exchanges of greenhouse gas emissions
between soils and the atmosphere are some
of the better examples where the ecosystem
service has been linked to soil processes and
underlying soil properties; these relationships
are even well quantified. Tropical forest soils
are a major source of nitrous oxide emissions,
and these are related to soil N availability and
water-filled pore space (69, 70). N availability
relates to the N cycling in the system and is de-
pendent on the vegetation type and litterfall,
soil organic matter levels, and texture. Water-
filled pore space is related to soil aggregation
and bulk density, determined in part by clay
type and texture. Studies have indeed shown
higher N2O fluxes from clayier and more fer-
tile soils (71–73).

Links between soil age and mineralogy
to the supporting service of nutrient cycling
have been detailed first through a synthesis
of existing literature (74, 75) and later shown
through field studies on a chronosequence
of soils (15). Tropical soils with oxidic and
kaolinitic mineralogy cycled low amounts of
P and Ca, which are indicative of the low
phosphorus availability owing to P-fixation
by these clay minerals (the FCC i modifer)
and the low nutrient capital of these highly
weathered soils (the FCC k modifier); sandy
Spodosols cycled low amounts of N.

Table 5 is a work in progress but will
hopefully stimulate thinking and research
that leads to a more rigorous discussion on the
links between soils and ecosystem services and
how these links and services differ among soil
types. Although there have been considerable
advances in the past 15 years, the specificity
of the linkages has not been used sufficiently
in recent discussions on the role of soils in
ecosystem services. Much of this informa-
tion exists in the literature of soil science,
ecosystem science, and landscape ecology.
The starting point is an integrated synthesis
of existing literature focused on defining
relationships between specific soil properties
and associated soil properties and processes,
estimating a property from other soil proper-
ties is commonly done through pedotransfer
functions. There is a rapidly growing body of
research using the application of pedotransfer
functions for estimating difficult-to-measure
soil parameters from those more easily
measured (76, 77). A quantitative relationship
between all the main soil properties and soil
processes through pedotransfer functions
is needed for modeling and prediction of
thresholds in ecosystem services of soils.

SOIL DEGRADATION:
AN ECOSYSTEM SERVICE
PERSPECTIVE

In general, the increased provisioning of food,
fuel, and fiber realized over the past four
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decades (3) has resulted in the degradation
of soils and several supporting and regulatory
services provided by soils (3). This decline
in soil properties and regulating ecosystem
services will ultimately impact the ecosystem
provisioning services. Understanding the fac-
tors that affect the stability and resilience of
soils upon disturbance is one of the frontiers
of soil science (78).

Soil degradation can be defined as the ad-
verse changes in soil properties and processes
leading to a reduction in ecosystem services.
Through such changes in soil properties and
processes, soil degradation undermines the
sustainability of many of the ecosystem ser-
vices. There are innumerable studies on soil
degradation, such as loss of soil organic mat-
ter, increased erosion, and nutrient depletion
(79), but there are relatively few studies that
have quantified the linkages and thresholds
between the change in soil properties and the
associated change in soil processes. In other
words, how much change in soil aggregation
is required before there is a change in soil
porosity and water infiltration? What level
of soil organic matter, relative to the initial
condition, is needed to maintain soil aggre-
gation at sufficient levels? The studies rarely
provide quantitative assessments on the im-
pacts of soil degradation on the provisioning
ecosystem services of soils. The connection to
and impacts of soil degradation on the regu-
lating services of soil have only recently begun
to be considered (3, 40). Until such quantita-
tive links are made between the magnitude of
changes in soil properties and the magnitude
of change in soil processes, and are ultimately
integrated to ecosystem processes, it will be
difficult to understand and predict soil degra-
dation in a meaningful way.

Types and Process
of Soil Degradation

Globally, the five principal anthropogenic
causes of soil degradation, in order of increas-
ing magnitude, are considered to be over-

grazing, deforestation, poor land manage-
ment, harvest of fuelwood, and urbanization
(80). Soil degradation almost invariably be-
gins with the removal of the natural vege-
tative cover through deforestation, biomass
burning, nutrient depletion, and overgraz-
ing. The soil surface is exposed to impacts
of rainfall, which disrupts soil aggregates, and
higher temperatures, which increase soil or-
ganic matter decomposition rates; in addi-
tion, litterfall and roots, the major sources
of organic inputs that maintain soil organic
matter, are removed or diminished consider-
ably. Subsequent rates and types of soil degra-
dation are determined by the type and in-
tensity of land use. Soil degradation can oc-
cur quickly depending on the combination
of and feedbacks between management prac-
tices, initial soil conditions, vegetation, and
environmental factors such as rainfall (81–
83). Soil degradation is usually categorized by
physical, chemical, and biological processes;
the division provides a means of establishing
links between land management, degradation
processes, and soil processes (Table 6).

Soil physical degradation. Physical degra-
dation involves the structural breakdown of
the soil through aggregate disruption, surface
sealing, and compaction; these degradation
processes result in reduced infiltration and in-
creased water runoff and soil erosion.

The impact of raindrops leads to surface
sealing and compaction. The formation of a
structural seal results from two complemen-
tary mechanisms: (a) physical disintegration
of surface aggregates caused by wetting rain-
drop impact energy; and (b) physicochem-
ical dispersion of clay particles, which mi-
grate into soil with infiltrating water and
clog the pore immediately beneath the sur-
face forming a zone of decreased porosity
(84). Soils with intermediate (loamy) texture
are the most susceptible to seal formation be-
cause the amount of clay is too low to sta-
bilize aggregates but sufficient to clog pores
at the surface. Cultivation further affects soil
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Table 6 Types of soil degradation and causes and impacts on soil processesa

Type
Causes (not one to one

along row) Degradation process Impact on soil processes
Physical Deforestation Breakdown of soil structure,

aggregation and porosity
Reduction in infiltration capacity
Changes in soil water-retention characteristics

Biomass burning Crusting and surface sealing Increase in runoff rate and amount

Tillage up and down slope,
excessive animal, human,
and machine traffic,
overgrazing

Compaction of surface and
subsoil, reduction in
proportion and
strength/stability of aggregates

Accelerated erosion by water and wind
Increase in bulk density leading to reduction in
porosity

Water logging and anaerobiosis
Chemical Irrigation with poor quality

water, inadequate drainage
Salinization, alkalinization Accumulation of base-forming cations

Little to no use of fertilizers Nutrient depletion Decreased levels of macronutrients on exchange
sites, soil organic matter, and in soil solution

Excess use of fertilizers Acidification, eutrophication Leaching and runoff of nutrients to water
sources

Application of industrial,
urban wastes

Toxification, contamination with
heavy metals, pollution

Excessive build up of some elements (e.g., Al,
Mn, Fe) and heavy metals (e.g., lead and
mercury); increase in soilborne pathogens

Biological Removal of or burning
residues

Depletion of soil organic carbon Reduction in N mineralization, soil
aggregation, and related properties

Little or no use of organic
inputs

Decline in diversity and
abundance of soil biota

Shift in species composition and diversity of
favorable soil organisms

Monoculture, excessive
tillage

Loss of soil structure Reduction in porosity and infiltration,
reduction in activity of soil biota

aModified from Reference 104.

structure by destroying soil aggregates that re-
sult in loss of soil organic matter (28, 85).

Soil erosion is often highlighted as the
major type of soil degradation; it is also the
most visible. The impacts of soil erosion
ramify throughout the soil processes and
ecosystem services by the loss of soil depth,
soil nutrients, biota, organic matter, and
water resources. These integrated changes
translate into the reduced primary productiv-
ity of ecosystems. The extent of soil erosion
is usually estimated from experimental
Wischmeier erosion plots (86); this method-
ology overestimates erosion losses because
of the small size of these plots and does not
account for redistribution of soil in the same
field, which results in no net losses at the field
scale (87). These point measurements have
been extrapolated to different soils, climates,
and landscapes to give estimates of global soil

erosion. Erosion risk does not automatically
imply productivity losses or land degradation,
as commonly assumed. There are however
landscape-level models that estimate erosion
in an integrated manner taking into account
climate, soil properties, and topography, and
such models are used to look at impacts on
other ecosystem services (88).

Physical degradation processes other than
erosion were found to be more common in
temperate region agriculture because of more
intensive use of heavy machinery (89). Unfor-
tunately, none of these estimates was related
to changes in agroecosystem productivity.

Soil chemical degradation. Soil chemical
degradation processes are associated with soil
chemical imbalances resulting from a chem-
ical reaction or pH; declines in availability
of plant nutrients (nutrient depletion); and
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excessive buildup of nutrients (eutrophica-
tion), salts (salinization in the root zone and
beyond), or toxic materials.

Nutrient depletion, or soil fertility decline,
is the predominant form of chemical degrada-
tion in much of the tropics, particularly Africa,
where nutrient losses through crop residue re-
moval and harvested products, erosion, and
leaching are not replaced with sufficient ex-
ternal inputs (90). Nutrient depletion results
in lower productivity of crops and biomass in
general that leads to further declines of soil
organic matter. Soils with low initial nutri-
ent capital, low cation exchange capacity, low
activity variable charge clays, and low soil or-
ganic matter become depleted more quickly
than soils without these properties and in-
clude Ultisols, Oxisols, and sandy Inceptisols.
There is a growing body of literature that will
be useful in making the links between nutri-
ent depletion and reduction in plant produc-
tivity as has been done for soil erosion and
declines in productivity (91). Soil eutrophica-
tion, by contrast, is a degradation process that
is found primarily in developed countries in
temperate regions where excessive amounts of
fertilizer, manures, and pesticides are applied
in large-scale agriculture (92).

Soil biological degradation. Many key soil
functions are underpinned by soil organic
matter and soil biota, so biological degrada-
tion is often synonymous with decline in soil
organic matter and loss of soil biota. The de-
pletion of soil organic matter when natural
systems are converted to agriculture and with
the intensification of agriculture by tillage is
the most comprehensively studied form of bi-
ological degradation (8, 26, 32, 93–100).

Rates of change in soil organic matter con-
tent and the level of change depend in part on
the soil type (slower in clayey soils), land-use
type, and climate (slower in colder or drier cli-
mates and waterlogged condtions). The body
of literature on soil carbon changes when nat-
ural systems are converted to annual crop-
lands is extensive and sufficient to provide
the pedotransfer functions needed for relating

loss of soil properties to many ecosystem pro-
cesses (22, 98). Information on changes fol-
lowing other land-use transitions, including
natural systems to pastures or tree plantations
or annual cropping systems to pastures or
tree-based systems, or even changes in man-
agement of annual cropping systems is more
recent. A meta-analysis of soil carbon changes
with land-use change in both temperate and
tropical soils shows a decline of soil carbon by
50% in the top 30 cm when forests were con-
verted to cropland, a decline of 15% when
forests were converted to coniferous planta-
tions, no decline when forests were converted
to broadleaf plantations, and an overall in-
crease of about 10% when forests were con-
verted to pastures (100).

Assessment of Soil Degradation

There are three significant assessments of the
global extent of land degradation: the Global
Assessment of Human-Induced Soil Degrada-
tion (GLASOD) (101), research work (102),
and more recent assessments (103). GLASOD
is the most comprehensive and widely quoted
assessment. Although the initial framework
set up for GLASOD was sound and based
on scientific information, because of time and
resource constraints, the final methodology
and assessment were based on expert opinions
from 250 soil and environmental scientists.
The quality of the GLASOD data is extremely
uneven (104) and the estimates are indicative,
at best (105). Furthermore, dating from 1991,
the estimate of total land area affected by soil
degradation at 2 billion hectares is now out of
date. This data set should no longer be used
for quantifying the extent of soil degradation,
and just like the FAO-UNESCO soil map of
the world, there is a need for up-to-date and
accurate information on soil degradation and
global soil information.

One assessment was based on anecdotal
accounts, research reports, travelers’ descrip-
tions, personal opinions, and local experience
(102). The most recent assessment (103) has
the benefit of combining multiple sources of
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information, including regional data sets de-
rived from a literature review, erosion models,
field assessments, and remote sensing. How-
ever, it did not have complete spatial coverage
and was limited to 62% of drylands, with some
areas relying on a single data set.

These assessments of land degradation all
have major weaknesses. Literature on soil
degradation assessments is replete with gross
extrapolations on the basis of limited data, of-
ten outside the regions from which the data
were obtained (87). These data cannot be
used for baseline development, assessment,
and monitoring of soil degradation and are
unsuitable for land-use planning and identi-
fication of conservation/restoration policies
(104). A major indictment of the GLASOD
land degradation assessment was delivered by
its exclusion from the Pilot 2006 Environ-
mental Performance Index for the reasons
that the data are outdated and not comparable
enough to permit cross-country performance
assessments (106).

Conventional methods of soil assessment
rely on direct laboratory measurements that
are time consuming and costly. Temporal and
spatial variability in soil attributes presents
formidable challenges for soil survey design.
There is a global surge toward developing
time- and cost-efficient techniques for soil
evaluation (107, 108). This demand is driven
by the need for large amounts of good qual-
ity, inexpensive soil data for use in monitoring,
modeling and risk assessment (109, 110).

The inherent methodological weaknesses
can be removed using a combination of in
situ data on soil parameters at the pedon
or soilscape, and satellite information at
multiple resolutions (77, 111, 112). Cur-
rent advances in pedotransfer functions,
reflectance spectroscopy, statistical infer-
ence, and remote sensing can overcome the
limitations of conventional methods of soil
analysis. Pedotransfer function research has
focused on the development of functions
for predicting soil physical and chemical
properties for different geographical areas or
soil types. Soil inference systems have been

developed (77) where pedotransfer functions
are the knowledge rules for inference engines.
A soil inference system takes measurements
that are more-or-less known with a given
level of (un)certainty, and infers data that is
unknown with minimal inaccuracy, by means
of properly and logically linked pedotransfer
functions (113, 114). Near infrared spec-
troscopy is rapid and inexpensive, and a single
spectrum permits simultaneous character-
ization of various chemical, physical, and
biological properties (115–120). In addition,
the repeatability over time and reproducibility
among different laboratories of this technique
far exceed the performance of conventional
soil analysis. Soil properties predicted from
spectra may be used in an inference system to
predict other important and functional soil
properties using pedotransfer functions.

Research has demonstrated that regional
patterns of soil degradation can be reliably
mapped using automated or supervised dig-
ital information extraction, which is based on
spectral and/or structural pattern recognition
techniques. Extrapolation of this approach
to other regions where soil degradation fea-
tures are correlated with spectrally distin-
guishable surface characteristics is feasible.
For instance, the state of land degradation in
a small Mediterranean watershed was char-
acterized using (Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer)
ASTER data and ground-based spectral re-
flectance measurements (121).

A combination of pedotransfer functions,
reflectance spectroscopy, statistical inference,
and remote sensing offers the best oppor-
tunity for developing dynamic digital soil
maps that would include the types and ex-
tent of soil degradation and would trans-
form the way soil information is obtained and
produced.

The challenges of halting and reversing the
degradation of the provisioning, regulating,
and supporting ecosystems services on which
will all depend are daunting. The challenge
must be met if we are to attain the MDGs and
particularly to provide an environment that
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can continue providing these services into the
future. Many of these ecosystem services are
dependent on soils and therefore the rever-
sal of ecosystem degradation starts with the
rehabilitation of soils. Our understanding of
the links between specific soil properties, soil
processes, and ecosystem services is too in-
complete to meet this challenge. Renewed and

directed efforts and partnerships among re-
ductionist soil scientists that link soil prop-
erties to processes, ecosystem ecologists who
link soil processes to ecosystem services; and
landscape ecologists and agronomists who put
these processes into a broader and relevant
context for planning and management deci-
sions are the way forward.

SUMMARY POINTS

1. The framework for comparing soils is based on the premise that the natural capital
of soils that underlies ecosystem services is primarily determined by three core soil
properties: texture, mineralogy, and soil organic matter.

2. Up-to-date descriptions and distributions of soil orders and soil attributes and con-
straints are given according to latitudinal belt and biomes.

3. Relationships between soil types and soil properties and biomes are described.

4. An attempt was made to relate ecosystem services to specific soil processes, soil prop-
erties, and soil constraints and attributes.

5. The need and framework for assessing soil degradation as it relates to changes in soil
properties, processes, and ultimately ecosystem services are proposed.

6. The use of reflectance spectroscopy and remote sensing for simultaneous characteri-
zation of various chemical, physical, and biological properties to overcome the great
limitations and costs of conventional methods of soil analysis is described.

FUTURE ISSUES

1. A dynamic, digital, global soil map needs to be developed using data from remote and
on-ground sensors combined with geospatial information on elevation and climate
for predicting soil types and properties for large areas for which there is currently no
information.

2. A more complete set of quantitative relationships (pedotransfer functions) must be
developed between soil properties, attributes, processes, and resulting ecosystem
services.

3. The current state and extent of soil degradation and risk of degradation must be
assessed through the use of digital soil maps and application of pedotransfer functions,
linking degradation to impacts on ecosystem services.
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