
degradation additionally generates metab-
olites with diverse physicochemical prop-
erties that drastically hamper estimation of
fate and effects. Glyphosate, for instance,
designed as a specific enzymatic inhibitor
for weed germination, is currently accepted
as a broad-spectrum toxicant, endocrine
disruptor, and human carcinogen [4].
Glyphosate metabolites have even broader
toxicity [4]. Comparatively, our ability to
forecast the fate [5,6] and effects [7] of
organisms lags far behind predicting
chemical effects. Lack of mechanistic
knowledge denotes low environmental
control and unknown risks [7], that is, a
single organism can attain unknown pop-
ulation sizes, produce unpredicted metab-
olites, and give rise to complex ecological
interactions. Consider the soil entomopa-
thogenic bacteria Bacillus thuringiensis
(Bt), a successful biopesticide. It produces
thousands of different toxins and metabo-
lites that synergistically account for its
insecticidal activity [8]. Predicting the fate
or monitoring each compound is currently
impossible because they are not fully
described and their production varies with
environmental conditions [8]. Bt is toxic to
�25% of non-target organisms studied,
shows vertebrate in vitro cytotoxicity, and
it horizontally exchanges genetic material
with other populations. Also, evolutionary
pressure by Bt caused trophic rearrange-
ments in heavily treated areas. Notwith-
standing these effects, modern Bt
biopesticides fail to show toxicity in old
standardized ecotoxicological assays [8],
and manufacturers have assured that Bt
biopesticides are globally marketed with-
out application limits. New ecotoxicological
tools are required to properly establish safe
limits for usage of pathogenic microorgan-
isms. Ecological indirect effects might be
less explicit. For instance, uncontrolled
populations of beneficial mycorrhizal fungi
might impact below- and above-ground
communities because they selectively influ-
ence the fitness of better host plants [7,9].
In contrast to microbes, better mechanistic
knowledge and advantages of controlling
larger size organisms [7] make less likely
unforeseen risks of engineered crops.
10 Trends in Ecology & Evolution, January 2017, Vol. 32, N
Unregulated ecological intensification
might also exacerbate risks of biodiversity
loss and extinction. The main anthropo-
genic causes for extinction are habitat loss
and introduction of invasive species [6].
Traditional agriculture can cause the first
[1,10], whereas the inoculation of soil
organisms and genetic manipulation as
proposed by Bender et al. [1] and others
might foster the latter. Important soil
organisms like fungi may show low inter-
continental genetic exchange and high
regional endemism [11]. The assembly of
such organisms is limited by dispersal
[9,11]. Therefore, their global biogeogra-
phy can change rapidly if few strains are
made commercially available, with unde-
sirable wide-ranging effects on plants, bio-
diversity, and ecosystem functions [7].
Moreover, Bt genes inserted in different
below- and above-ground organisms
provide the agricultural market with boom-
ing genetically modified multipesticidal
organisms that require fewer interspecies
interactions to deliver desired outcomes.
Thus, it is sensible that commercialization
of competitive transgenic hybrid plants or
microbes proposed [1] could affect soil
biodiversity.

We believe that techniques from Bender
et al. [1] are encouraging. Agriculture must
be adjusted to secure future food produc-
tion and environmental heath [9]. How-
ever, there are biogeochemical,
ecotoxicological, and biodiversity threats
associated with soil microbiome manage-
ment. Without the proper mechanistic
knowledge, it is not prudent to assume
that the consequences are strictly positive
[7]. To help to achieve the sustainability
goal from Bender et al., we propose that
such an underground revolution must be
accompanied by a dedicated consider-
ation of its potential impacts on soil biodi-
versity and its function.
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agricultural sustainability [1]. In their
response to our article, Machado et al.
[2] stress the point that potential undesir-
able side effects of soil ecological manip-
ulations have to be considered and
carefully investigated. We fully agree with
their general appeal to consider ecological
consequences of ecosystem manipula-
tions (see also p. 447 in [1]). However,
we want to recall that there are no human
activities without a certain impact on eco-
systems. Agricultural management of soils
generally has strong adverse impacts on
the structure and functioning of soil com-
munities. The impacts of the ecological
manipulations proposed in our article [1]
therefore have to be considered in the light
of the already existing management sys-
tem to which they are applied.

We categorized the soil ecological engi-
neering approaches proposed in Bender
et al. [1] in two groups, the ‘direct’ and the
‘indirect’ approaches (Figure 1). The indi-
rect approach serves to foster, optimize,
Management prac�ces increasing 
environment al heterogen eity / 

niche diversity and biotope  space, 
e.g., crop  rota�o n, reduced �lla ge, 

intercropp ing

Crea�n g conduci ve condi� ons  for   
func�o nal ly diverse  an d efficient

soil commu ni�es

Indirect app roa ch

Rich and  diverse  soi l commu ni 
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delivery, or the planting of engineered crops producing 

potentially bears the risk of unwanted environmental ri
Through beneficial biodiversity effects, the indirect app
and use the inherent potential of soil eco-
systems to maximize ecosystem function-
ing by appropriate management. For
instance, crop rotation and the inclusion
of grass–clover pastures/ley in rotations
can be used to promote beneficial soil life
and soil ecosystem services. Grass-clover
pastures can fix substantial amounts of
nitrogen (up to 300 kg N/ha year [3]),
sequester carbon [4], contribute to pest
and disease control (including effective
control of the corn rootworm Diabrotica
virgifera [5]), and a one- or two-year
grass–clover pasture in a rotation can
enhance populations of beneficial soil
biota such as earthworms and arbuscular
mycorrhizal fungi [6,7]. These strategies
affect soil communities indirectly by
increasing environmental heterogeneity,
niche diversity, and biotope space, pro-
viding conducive conditions for well-
developed and functionally robust soil
food-webs (Figure 1). The breeding of
crops efficiently interacting with native soil
communities through specific root
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Trend
exudation patterns also falls in this group.
As long as no non-native soil organisms
are introduced to the system or crops
releasing multitoxic compounds are
planted (see the example of Bacillus thur-
ingiensis biopesticides described in
Machado et al. [2]), we consider these
approaches as relatively unproblematic
for soil ecosystems and their biodiversity.
We agree with Machado et al. [2] that
these approaches might lead to unbene-
ficial outcomes under some circumstan-
ces. If properly managed, however, these
effects can be minimized and are unlikely
to cause more negative side-effects than
those caused by ‘mainstream’ agricultural
practices such as pesticide application,
fertilization, and intensive tillage. For
example, if crops with denitrification-inhib-
iting traits [8] were planted and nitrate
availability to plants increased, the
amounts of external N fertilizer could be
accordingly reduced. Such approaches
could lead to more efficient nutrient cycling
(from an agronomic perspective), as plant
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nutrition is maintained, while fertilizer
inputs and gaseous N losses, including
the strong greenhouse gas N2O, are
reduced. Thorough scientific investiga-
tions have to develop proper manage-
ment guidelines to assure that such
approaches lead to the desired increase
in nutrient cycling efficiency.

The direct approach (Figure 1) comprises
the addition of non-native soil-organisms
into agricultural field sites. We fully agree
that this approach requires careful risk
assessment, as such organisms could
potentially become invasive and threaten
native soil communities (Figure 1). As
stated in Bender et al. [1], methodology
is developing fast and allows deeper
insights in the fate and the competitive
abilities of microbes introduced into agri-
cultural soils. For example, with a newly
developed sequencing method,
Schlaeppi et al. [9] were able to show that
an inoculated strain of arbuscular mycor-
rhizal fungi (AMF) largely replaced a native,
but similar AMF strain in wheat roots. As
noted by Machado et al. [2], large scale
application of such AMF in agriculture
could lead to problems of invasiveness
and in extreme cases potentially lead to
the competitive exclusion and extinction of
native organisms [10]. More research is
indeed required to reveal whether these
scenarios are realistic and more harmful
for soil ecosystems than ‘mainstream’

agricultural practices.

Figure 1 by Machado et al. [2] adequately
summarizes the potential environmental
risks related to anthropogenic interventions
of differing complexity. However, many
of the presented potential outcomes of
interventions related to soil ecological engi-
neering would apply to natural ecosystems
converted to agricultural land. In our article
[1], we proposed to apply the principles of
12 Trends in Ecology & Evolution, January 2017, Vol. 32, N
soil ecological engineering to existing agri-
cultural systems. Existing systems are
often already confronted with many of
the potential risks of agricultural practices
summarized in their Figure 1. The set of
potential approaches summarized as ‘soil
ecological engineering’ [1] addresses many
of these negative outcomes of existing agri-
cultural practices and tries to alleviate
them. When focusing on ‘soil ecological
engineering’, we consider the range of
potential negative outcomes in Figure 1
of Machado et al. [2] as too extensive.

A hypothetical, optimized agroecosystem
managed by soil ecological engineering
principles would consist of a rich and bio-
diverse soil community. It has been shown
that soil communities of higher biodiversity
are more resistant towards pathogen inva-
sions [11]. Therefore, management sys-
tems that maintain and promote a rich
and diverse soil community are also likely
to be more resistant against species inva-
sions, as shown in more diverse plant com-
munities [12]. By applying several principles
of soil ecological engineering in conjunc-
tion, the overall benefits for agroecosys-
tems are likely to be greater as if single
approaches are applied in isolation.

We thank Machado et al. [2] for the impor-
tant complementation of our discussion.
Some approaches proposed by Bender
et al. [1] and others require new ecotoxi-
cological frameworks and careful consid-
erations before being applied on a large
scale (Figure 1). The goal of an ‘under-
ground revolution’ is to optimize internal
soil biological processes to generate sus-
tainable agroecosystems producing and
maintaining high yields, while minimizing
environmental impacts. We have to make
sure that unwanted side-effects are mini-
mized, so that the ‘underground revolu-
tion’ will endure and aid in feeding the
o. 1
human population without causing new
environmental problems.
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